

3D CNNs with Adaptive Temporal Feature Resolutions

Mohsen Fayyaz^{1,*}, Emad Bahrami^{1,*}, Ali Diba^{2,} Mehdi Noroozi³, Ehsan Adeli⁴, Luc Van Gool^{2,5}, Jürgen Gall¹

¹University of Bonn, ²KU Leuven, ³Bosch Center for Artificial Intelligence, ⁴ Stanford University, ⁵ ETH Zurich

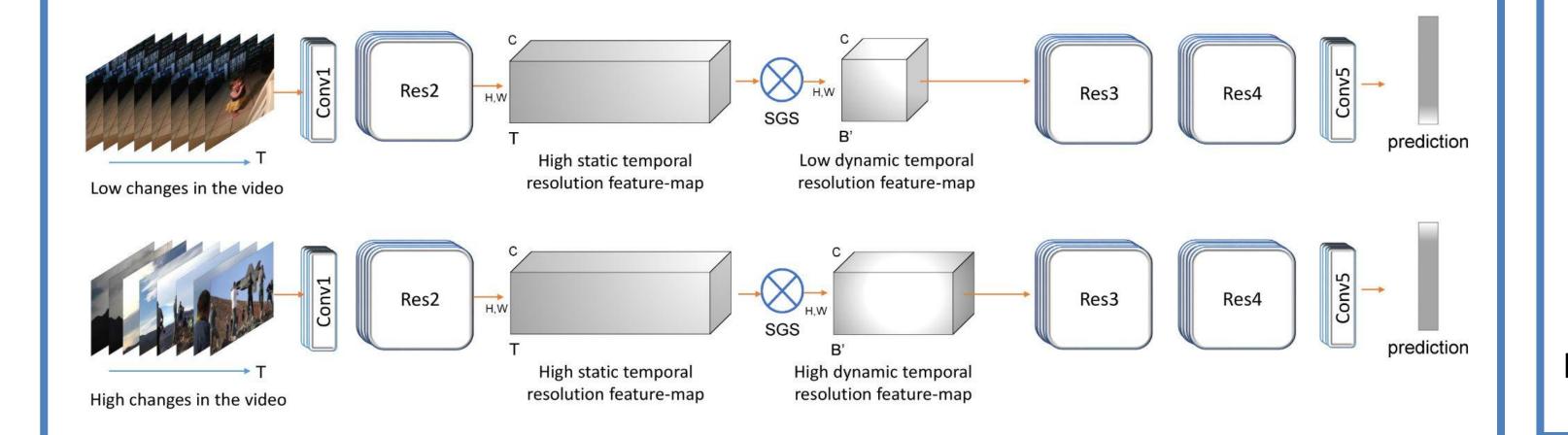
*Contributed equally to this work

https://similarityguidedsampling.github.io

1.Handling Redundancy In 3D CNNs

Problem:

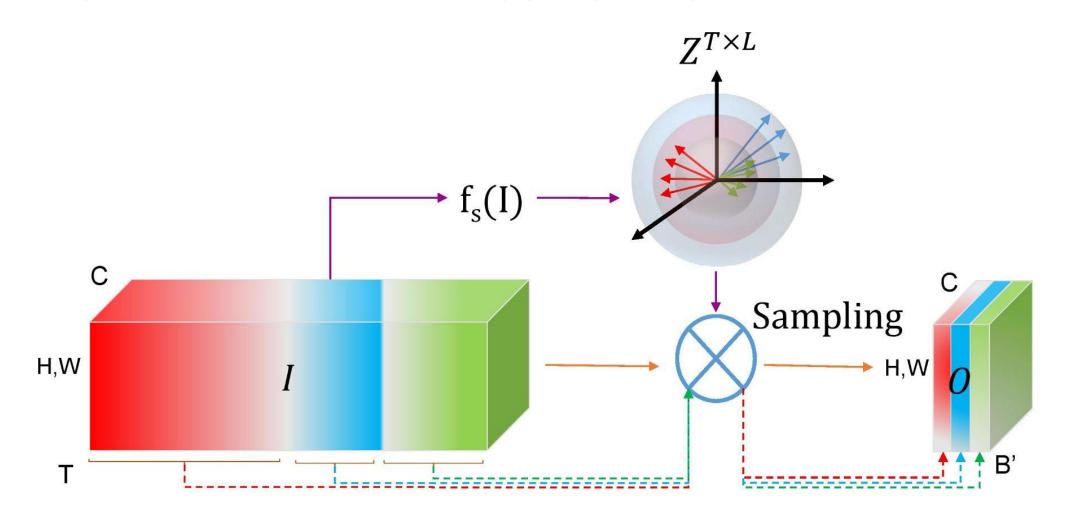
- Static temporal feature resolution leads to unnecessary computational overhead
- Various amount of changes across videos needs an adaptive method to handle the redundancy of temporal features
- Similarity Guided Sampling: discarding redundant information by grouping and aggregating temporally similar feature maps



- Complementary to existing 3D CNNs
- Reduction of GFLOPs in state-of-the art 3D CNNs by half while preserving the accuracy
- Adaptive temporal resolution to deal with variations in a dataset
- Evaluated on challenging datasets such as Kinetics and Something-Something V2

2.Similarity Guided Sampling

- Mapping temporal feature maps to learnt similarity space
- Sampling based on the similarity of feature maps
- Grouping similar maps and aggregating them



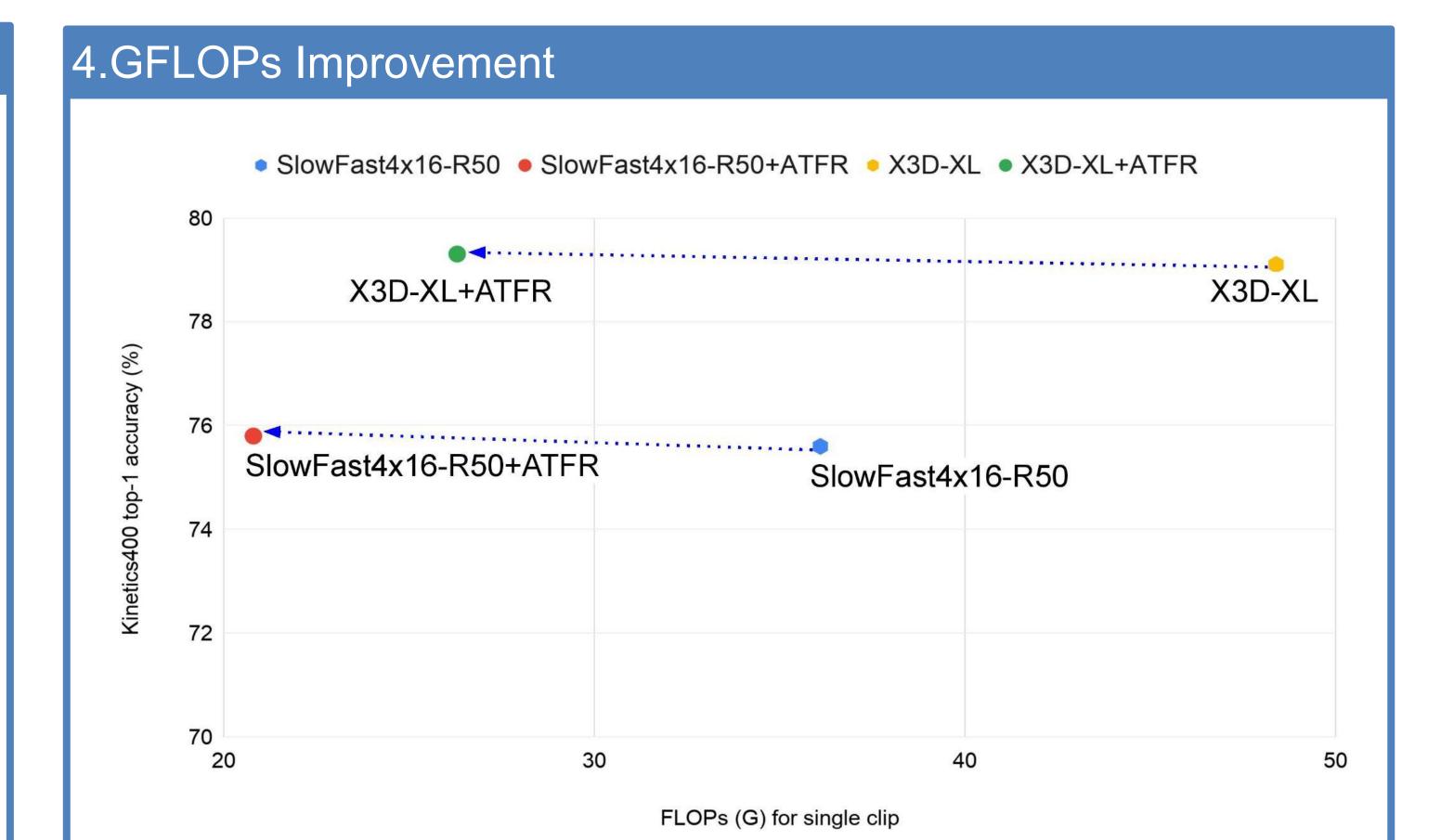
Differentiable bin sampling for sampling temporal feature maps

$$\mathcal{O}_b = \frac{1}{\sum_{t=1}^T \delta\left(\left\lfloor\frac{|\Delta_t - \beta_b|}{\gamma}\right\rfloor\right)} \sum_{t=1}^T \mathcal{I}_t \delta\left(\left\lfloor\frac{|\Delta_t - \beta_b|}{\gamma}\right\rfloor\right) \qquad \begin{array}{l} \Delta_t = ||\mathcal{Z}_t|| \\ \text{Num. bins B=T} \\ \Delta_{max} = \max(\Delta_1, \dots, \Delta_T) \end{array}$$
 Half width of bins: $\gamma = \frac{\Delta_{max}}{2B}$ Center of bins: $\beta_b = (2b-1)\gamma \quad \forall b \in (1, \dots, B)$

3. Temporal Resolution of Kinetics Action Classes

 Required adaptive temporal resolution for 3DResNet-50 + ATFR on Kinetics

Lowest Temporal Resolution	Highest Temporal Resolution				
presenting weather forecast	passing American football (in game)				
stretching leg	swimming breast stroke				
playing didgeridoo	playing ice hockey				
playing clarinet	pushing cart				
golf putting	gymnastics tumbling				



5.Comparison with State-of-the-art

Results on Kinetics-400

model	GFLOPs	top1	top5	Param
SlowFast4×16,R50	36.1×30	75.6	92.1	34.40M
SlowFast4×16,R50+ATFR	$20.8 \times 30 \ (\downarrow 42\%)$	75.8	92.4	34.40M
$X3D-S^{\alpha}$	1.9×10	72.9	90.5	3.79M
$X3D-S+ATFR^{\alpha}$	$1.0 \times 10 \ (\downarrow 47\%)$	73.5	91.2	3.79M
$X3D-XL^{\alpha}$	35.8×10	78.4	93.6	11.09M
$X3D-XL+ATFR^{\alpha}$	$20 \times 10 (\downarrow 44\%)$	78.6	93.9	11.09M
$X3D-XL^{\beta}$	48.4×30	79.1	93.9	11.09M
$X3D-XL+ATFR^{\beta}$	$26.3 \times 30 (\downarrow 45\%)$	79.3	94.1	11.09M

Accuracy and GFLOPs for Something-Something-V2

model	pretrain	GFLOPs	top1	top5
SlowFast-R50	Kinetics400	132.8	61.7	87.8
SlowFast-R50+ATFR	Kinetics400	87.8 (\ \ 33\%)	61.8	87.9